Synthesis of dinuclear palladium complexes having two parallel isocyanide ligands, and their application as catalysts to pyrrole formation from tert-butylisocyanide and alkynes

Naofumi Tsukada *, Makiko Wada, Naoki Takahashi, Yoshio Inoue *
Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

ARTICLE INFO

Article history:

Received 21 February 2008
Received in revised form 10 December 2008
Accepted 12 December 2008
Available online 25 December 2008

Keywords:

Palladium
Dinuclear complex
Pyrrole
Isocyanide
Alkyne

Abstract

Novel dinuclear palladium complexes having two isocyanide ligands were synthesized by using a binucleating ligand, N, N^{\prime}-bis[2-(diphenylphsphino)phenyl]formamidinate (dpfam). The structure of $\left[\mathrm{Pd}_{2}\right.$ $(\mu$-dpfam $\left.)(\text { tert-BuNC })_{2}\right] \mathrm{Cl}$ was confirmed by X-ray analysis, showing that the $\mathrm{Pd}-\mathrm{Pd}$ bond length of $2.5824(3) \AA$ falls well within the range of those for known dipalladium complexes having the edge-sharing structure and two isocyanides coordinate to palladium in almost parallel and in close proximity. The dinuclear complex $\left[\mathrm{Pd}_{2}(\mu\right.$-dpfam $)\left(\right.$ tert- $\left.\mathrm{BuNC}_{2}\right] \mathrm{PF}_{6}$ served as catalyst for pyrrole formation from tertbutylisocyanide and various alkynes.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Catalysis using dinuclear transition metal complexes has recently received considerable attention [1]. Cooperation of two metal centers can improve the selectivity and efficiency of catalyzation, and can promote reactions that are not possible using a single metal center. Bis(diphenylphosphino)methane (dppm), or its analogues, is one of the most useful binucleating ligands [2], particularly for palladium and platinum complexes [3]. Although those complexes are known to adopt several geometries [2a], as illustrated in Chart 1A, their application as catalysts has been rarely reported. In our previous papers [4,5], we focused on the importance of cis orientation of two reactant ligands (Y in Chart 1B) for catalysis [4,6,7], and reported synthesis of the corresponding A-frame complexes having a new binucleating ligand, N, N^{\prime} -bis[2-(diphenylphsphino)phenyl]formamidinate (dpfam) [4] and their application to catalysis [5]. We report here synthesis of dinuclear palladium complexes having the edge-sharing structure, which have two parallel isocyanide ligands, and their application as catalysts to pyrrole formation.

[^0]
2. Results and discussion

2.1. Synthesis of dinuclear palladium complexes

The reaction of dpfamH with $\mathrm{PdCl}_{2}($ tmeda $), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$, and excess tert-butylisocyanide in dichloromethane at room temperature resulted in the formation of the dinuclear palladium complex $\left[\mathrm{Pd}_{2}(t-\mathrm{BuNC})_{2}(\mu\right.$-dpfam $\left.)\right] \mathrm{Cl}(\mathbf{1 a})(S c h e m e 1)$. Treatment of $\mathbf{1 a}$ with excess $\mathrm{NH}_{4} \mathrm{PF}_{6}$ gave $\left[\mathrm{Pd}_{2}(t-\mathrm{BuNC})_{2}(\mu\right.$-dpfam $\left.)\right] \mathrm{PF}_{6}(\mathbf{1 b})$ in 81% yield. Crystallization of $\mathbf{1}$ by slow diffusion of diethyl ether into a solution of 1,2-dichloroethane afforded a red crystal suitable for X-ray analysis. The molecular structure of $\mathbf{1 a}$ is shown in Fig. 1. The Pd-Pd bond length of $2.5824(3) \AA$ is shorter than those of the corresponding A -frame complexes [4] and falls well within the range of those for known dipalladium complexes having the edge-sharing structure [2a]. Although the two palladium planes are slightly twisted $\left(\mathrm{N}(1)-\mathrm{Pd}(1)-\operatorname{Pd}(2)-\mathrm{N}(2) 21.19(12)^{\circ}, \mathrm{C}(38)-\right.$ $\left.\operatorname{Pd}(1)-\operatorname{Pd}(2)-C(43) 30.26(19)^{\circ}\right)$, two isocyanides coordinate to palladium in almost parallel and in close proximity. A number of $\mathrm{Pd}-\mathrm{Pd}$ bonded complexes having isocyanide ligands have been reported [8-11]. In most of unbridged complexes, the dihedral angles between two coordination planes are much larger than that of 1a, and isocyanide ligands are distant each other [8]. In dipalladium complexes bridged by binucleating ligands such as dppm, the dihedral angles are smaller, however, two isocyanides coordinate to palladium centers in trans orientation (Chart 1A) [9]. There are only a few reports on dipalladium complexes having parallel isocyanide ligands [10].

Chart 1.

Scheme 1.

Fig. 1. Molecular structure of the cation of 1a, showing 50% thermal ellipsoids. Selected bond lengths (\AA) and angles $\left(^{\circ}\right): \operatorname{Pd}(1)-\operatorname{Pd}(2) 2.5824(3), \operatorname{Pd}(1)-\mathrm{P}(1)$ $2.3417(10), \operatorname{Pd}(2)-\mathrm{P}(2) 2.3140(10), \operatorname{Pd}(1)-\mathrm{N}(1) 2.061(2), \operatorname{Pd}(2)-\mathrm{N}(2) 2.064(2)$, $\mathrm{Pd}(2)-\mathrm{Pd}(1)-\mathrm{P}(1) \quad 165.64(2), \quad \mathrm{Pd}(1)-\mathrm{Pd}(2)-\mathrm{P}(2) \quad 167.86(2), \quad \mathrm{C}(38)-\mathrm{Pd}(1)-\mathrm{Pd}(2)-$ $\mathrm{C}(43)$ 30.26(19), $\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Pd}(2)-\mathrm{N}(2)$ 21.19(12).

2.2. Catalytic pyrrole formation

Since the dinuclear palladium complexes having two parallel isocyanide ligands were expected to be effective as catalysts in the reactions oligomerizing more than two isocyanides, we next investigated the application of the complexes $\mathbf{1}$ to a pyrrole forming reaction, in which 2-amino-5-cyanopyrroles are formed from three molecules of tert-butylisocyanide and one molecule of alkynes (Eq. (1)). Although the nickel-catalyzed version of this pyrrole forming
reaction was reported by Jautelat and Ley in 1970 [12,13], the yield was moderate and no further studies have been done. Expectedly, the reaction of tert-butylisocyanide with phenylacetylene using 1b as catalyst in 1,2-dichloroethane (DCE) at $80^{\circ} \mathrm{C}$ afforded pyrroles $\mathbf{3 a}$ and $\mathbf{3 b}$ in high yield, while complex 1a did not serve as catalyst (Eq. (1), Table 1, entries 1 and 2). When the reaction was conducted at higher and lower temperature or in other solvents such as THF, toluene, and acetonitrile, pyrroles $\mathbf{3}$ were obtained in lower yields (entries 3-8). Although ordinary mononuclear palladium complexes such as $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ could be used as a catalyst, the yield of $\mathbf{3}$ was moderate (entries 10-13). In the reaction using $\operatorname{Pd}(\mathrm{OAc})_{2}$, a significant amount of 5-imino-3-pyrrolin-2one $\mathbf{4}$ was formed (entry 13). The use of proportionate amounts of reactants decreased the yield of $\mathbf{3}$ (entries 9 and 12). Higher concentration of tert-butylisocyanide probably prevents coordination of phenylacetylene to palladium. When a solution of tert-butylisocyanide in DCE was added dropwise over 5 h using a syringe pump, pyrroles $\mathbf{3}$ were obtained in a satisfactory yield (Eq. (2)).

4

Table 1
Palladium-catalyzed pyrrole forming reaction from phenylacetylene and tertbutylisocyanide. ${ }^{\text {a }}$

Entry	Catalyst	Solvent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Yield $^{\text {b }}$ $(\%)$	Ratio $^{\text {c }}$ $(\mathbf{3 a}: 3 b$

[^1]Table 2
Palladium-catalyzed pyrrole forming reaction from various alkynes and tertbutylisocyanide. ${ }^{\text {a }}$

Entry	R^{1}	R^{2}	Product	Yield $^{\mathrm{b}}$ (\%)	Ratio $^{\mathrm{c}}(\mathbf{a}: \mathbf{b})$
1	$n-\mathrm{Bu}$	H	$\mathbf{5}$	90	$79: 21$
2	$n-\mathrm{Hex}$	H	$\mathbf{6}$	74	$72: 28$
3	$\mathrm{CO}_{2} \mathrm{Me}$	H	$\mathbf{7}$	24	$>95:<5$
4	$\mathrm{CH}_{2} \mathrm{OMe}$	H	$\mathbf{8}$	46	$>95:<5$
5	Ph	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathbf{9}$	73	$49: 51$
6	Me	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathbf{1 0}$	42	$>95:<5$
7	Et	Et	$\mathbf{1 1}$	24	-
8	$n-\mathrm{Pr}$	$n-\mathrm{Pr}$	$\mathbf{1 2}$	13	-

${ }^{\text {a }}$ A mixture of an alkyne (0.5 mmol), tert-butylisocyanide (0.5 mmol), 1b ($0.01 \mathrm{mmol}, 2 \mathrm{~mol} \%$) in DCE (2 ml) were stirred at $80^{\circ} \mathrm{C}$ for $16-18 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Isolated yields based on tert-butylisocyanide.
${ }^{\text {c }}$ Determined by GC.

Table 2 summarizes the results of reaction of tert-butylisocyanide with various alkynes. The reactions with aliphatic terminal alkynes also gave corresponding pyrroles 5 and $\mathbf{6}$ with moderate regioselectivity (entries 1 and 2). In the reaction with methyl propiolate, one regioisomer 7a was selectively obtained, although the yield was low (entry 3). Methoxy group at a propargylic position also controlled the regioselectivity, giving single isomer 8a in better yield (entry 4). Internal alkynes also reacted with tert-butylisocyanide to afford highly substituted pyrroles. The reaction of methyl phenylpropiolate gave $\mathbf{9}$ in high yield and the reaction of methyl tetrolate proceeded regioselectively, affording 10a (entries 5 and 6). Although unactivated internal alkynes were less reactive, pyrroles 11 and 12 were obtained by using $\mathbf{1 b}$ as a catalyst. In contrast, the corresponding reactions using $\mathrm{Ni}(\mathrm{OAc})_{2}$ or $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as catalysts gave no products.

5-12a

5-12b

2.3. Mechanistic considerations

To gain insight into the mechanism of the pyrrole formation by $\mathbf{1 b}$, some stoichiometric reactions of $\mathbf{1 b}$ with pheylacetylene or 3 -hexyne in the presence or absence of tert-butylisocyanide were performed under several reaction conditions. Unfortunately, all reaction gave mixtures of unidentified several complexes. Although details of the reaction mechanism are unclear at the present time, some considerations have been made based on the mechanisms for the synthesis of $2(5 \mathrm{H})$-furanones from alkynes, carbon monoxide and water [14]. Joh et al. reported the furanone formation catalyzed by rhodium carbonyl clusters, for which they proposed the mechanism via multinuclear rhodium furanone complex 13 [14c]. Proposal of the intermediate 13 was based on the isolated dicobalt franone complex 14 formed from $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ and alkynes [15]. Although the authors conclusively proposed a different mechanism via a mononuclear anionic complex for the reaction in their next paper [14d], the present pyrrole formation could proceed via a dipalladium complex similar to 13 and 14 because two palladium atoms are held

13

14

1b

Scheme 2.
in adjacent positions by dpfam. A plausible pathway via dipalladium intermediates is shown in Scheme 2. Initially, alkynes would insert to the Pd-Pd bond of $\mathbf{1 b}$ [16], and then isocyanides would insert to the resulted Pd-C bond on 15. Intramolecular cyclization of 16 would afford iminopyrrolinyl complex 17. Complex $\mathbf{1 8}$ could be formed by cyanation of $\mathbf{1 7}$ with a cyanide ligand generated by $\mathrm{C}-\mathrm{N}$ bond cleavage [17] of third tertbutylisocyanide on palladium. Pyrroles $\mathbf{3}$ and 5-12 would be obtained by reductive elimination [18] of 19 from 18 and isomerization of 19 .

Other reaction pathways via mononuclear intermediates are also possible [14b,d,e]. At the present time, we cannot determine which pathway is more suitable for the pyrrole formation using 1b as a catalyst.

3. Conclusion

The dinuclear palladium complexes $\mathbf{1}$ having the edge-sharing structure were prepared from $\operatorname{Pd}(0)$ and $\mathrm{Pd}(\mathrm{II})$ precursors, dpfamH, and excess of tert-butylisocyanide. Two isocyanides in $\mathbf{1}$ coordinate to palladium in almost parallel and in close proximity. The complex 1b was effective as a catalyst in pyrrole formation from three molecules of tert-butylisocyanide and one molecule of alkyne. The
reaction using 1b gave products in better yields than that using $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. Furthermore, unactivated internal alkynes reacted with tert-butylisocyanide by using 1b, affording poly-substituted pyrroles. The reaction of internal alkynes using $\mathrm{Ni}(\mathrm{OAc})_{2}$ or $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ did not give any products. Although the precise mechanism of the present pyrrole formation has remained unclear, two adjacent palladium atoms in $\mathbf{1 b}$ seems to effectively cooperate each other. Other catalysis using 1 and synthesis of different types of edgesharing dinuclear complexes are under investigation.

4. Experimental

All reactions were carried out under a nitrogen atmosphere. Alkynes and tert-butylisocyanide were purchased from Aldrich or TCI and used without further purification. DCE was distilled from CaH_{2} under a nitrogen atmosphere.

NMR spectra were recorded by using a Bruker DPX-400 or Bruker DRX-500 spectrometer. ${ }^{1} \mathrm{H}$ NMR chemical shifts were measured relative to tetramethylsilane in CDCl_{3}. Phosphorus chemical shifts were determined relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as an external standard. IR spectra were recorded by using a JEOL FT/IR-350.

4.1. Synthesis of $\left[\mathrm{Pd}_{2}(\text { tert-BuNC })_{2}(\mu\right.$-dpfam $\left.)\right] C l(1 a)$

To a solution of dpfamH $(0.225 \mathrm{~g}, 0.40 \mathrm{mmol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $\mathrm{CHCl}_{3}(0.207 \mathrm{~g}, 0.20 \mathrm{mmol})$ in dichloromethane $(16 \mathrm{~mL})$ were added tert-butylisocyanide $(0.452 \mathrm{~mL}, 4.0 \mathrm{mmol})$ and then PdCl_{2} (tmeda) $(0.117 \mathrm{~g}, 0.40 \mathrm{mmol})$. After the mixture was stirred at room temperature for 20 h , Excess tert-butylisocyanide and dichloromethane were removed under reduced pressure. The residue was redissolved in dichloromethane (4 mL). Ether (40 mL) was added to the solution. Resulted red precipitates was collected by filtration, washed with ether, and dried. Yield: $0.36 \mathrm{~g}, 91 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.33(\mathrm{~m}, 24 \mathrm{H}), 7.24-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 18.49. Anal. Calc. for $\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{ClN}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2}: \mathrm{C}$, 57.71 ; H, 4.84; N 5.73; Cl, 3.62. Found: C, 57.08; H, 5.09; N, 5.25; Cl, 3.36\%.

Recrystallization by slow diffusion of diethyl ether into a solution of DCE gave a red crystal ($\mathbf{1 a} \cdot \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$). Data collection was carried out on a Rigaku CCD mercury system fitted with a monochromatic Mo Ka radiation source ($l=0.71069 \AA$) at room temperature. Eighteen preliminary data frames were measured at 0.5° increments of w, to assess the crystal quality and

Table 3
Crystal data and refinement details for $\mathbf{1 a}$.

	$\mathbf{1 a} \cdot \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$
Formula	$\mathrm{C}_{49} \mathrm{H}_{54} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{1.5} \mathrm{P}_{2} \mathrm{Pd}_{2}$
Formula weight	1104.10
Crystal system	Monoclinic
Space group	$P 2_{1} / \mathrm{c}(\# 14)$
$a(\AA)$	$13.920(3)$
$b(\AA)$	$25.632(5)$
$c(\AA)$	$14.937(3)$
$\beta\left({ }^{\circ}\right)$	$104.873(2)$
Z	4
$V\left(\AA^{3}\right)$	$5150.8(16)$
$D_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.424
$F(100)$	2244.00
$\mu(\mathrm{Mo} \mathrm{K} \alpha)\left(\mathrm{cm}^{-1}\right)$	9.553
No. of data collected	39707
No. of unique data $\left[R_{\text {(int) })}\right]$	$11465(0.041)$
$R_{1}[I>2 \sigma(I)]$	0.0471
$w R_{2}$	0.0662
Goodness-of-fit indicator	1.011

preliminary unit cell parameters. The intensity images were also measured at 0.5° intervals of w. The intensity images were integrated using the CRYSTAL CLEAR program package, and the empirical absorption correction was applied for the data. The structures were solved by a direct method (sir-92). All non-hydrogen atoms were refined anisotropically by full-matrix least-squares technique. All hydrogen atoms were placed in idealized positions, and were included but not refined. All calculations were performed using the crystal structure software package of Rigaku Corporation. Crystal data and refinement details are summarized in Table 3.

4.2. Synthesis of $\left[\mathrm{Pd}_{2}(\text { tert-BuNC })_{2}(\mu-\right.$ dpfam $\left.)\right] P F_{6}$ (1b)

To a solution of $\mathbf{1 a}(97.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dichloromethane (2.0 mL) and THF (4.0 mL) was added $\mathrm{NH}_{4} \mathrm{PF}_{6}(163 \mathrm{mg}, 1.0 \mathrm{mmol})$. After stirring for 2 h , solvents were removed under reduced pressure, and then the residue was dissolved in dichloromethane (4 mL). White precipitates were removed by filtration and washed with dichloromethane several times. After the volume of the combined filtrate was reduced to 1 mL under reduced pressure, ether $(10 \mathrm{~mL})$ was added to the solution. Resulted red precipitates were collected by filtration, washed with ether, and dried. Yield: 88 mg , 81%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.34(\mathrm{~m}, 24 \mathrm{H})$, 7.24-7.16 (m, 2H), 7.11-7.00 (m, 2H), 1.39 (s, 18H); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ $\mathrm{NMR}\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \delta$ 17.15, -143.78 . Anal. Calc. for $\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{P}_{3} \mathrm{Pd}_{2}$: C, 51.90; H, 4.36; N 5.15. Found: C, $51.20 ; \mathrm{H}$, 4.32; N, 5.15\%.

4.3. General procedure for the reaction of tert-butylisocyanide and alkynes

To a solution of $\mathbf{1 b}(10.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and tert-butylisocyanide ($57 \mathrm{ml}, 0.5 \mathrm{mmol}$) in DCE (2.0 mL) was added an alkyne (0.5 mmol) under a nitrogen atmosphere in a pressure vial. After heating at $80^{\circ} \mathrm{C}$ for $16-18 \mathrm{~h}$, the mixture was cooled to room temperature and filtered through a short plug of silica gel using ether as an eluent. Volatiles were evaporated and the residue was purified by silica gel column chromatography to give pyrroles.

4.4. 1-tert-Butyl-5-(tert-butylamino)-3-phenyl-1H-pyrrole-2carbonitrile (3a) [12]

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 7.62(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}$, $1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$.
4.5. 1-tert-Butyl-5-(tert-butylamino)-4-phenyl-1H-pyrrole-2carbonitrile (3b) [12]
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, $2.88(\mathrm{~s}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$.
4.6. 1-tert-Butyl-5-(tert-butylamino)-3-butyl-1H-pyrrole-2carbonitrile (5a) [12]
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.47(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 9 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}$, 9H), 0.92 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

4.7. 1-tert-Butyl-5-(tert-butylamino)-4-butyl-1H-pyrrole-2carbonitrile (5b) [12]

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.74(\mathrm{~s}, 1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 3 \mathrm{H})$, $1.78(\mathrm{~s}, 9 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}$, $J=7.29 \mathrm{~Hz}, 3 \mathrm{H})$.
4.8. 1-tert-Butyl-5-(tert-butylamino)-3-hexyl-1H-pyrrole-2carbonitrile ($\mathbf{6 a}$)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.47(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 9 \mathrm{H}), 1.65-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.21(\mathrm{~m}$, 15 H), 0.94-0.80 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): $\delta 142.30$, $140.06,118.25,98.12,52.20,32.45,31.71,31.31,30.30,29.91$, 29.85, 29.13, 26.98, 22.67; IR (neat): 3313, 2961, 2928, 2858, 2190, 1653, 1554, 1461, 1367, 1216, 958, 881, $767 \mathrm{~cm}^{-1}$; MS (EI): m/z 47 (95), 57 (100), 96 (27), 121 (47), 191 (32), 232 (12), 247 (26), 303 (7); HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{Na}[M+\mathrm{Na}]^{+}$: 326.2567; found: 326.2566.

4.9. 1-tert-Butyl-5-(tert-butylamino)-3-hexyl-1H-pyrrole-2carbonitrile (6b)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.73(\mathrm{~s}, 1 \mathrm{H}), 2.44-2.53(\mathrm{~m}, 2 \mathrm{H})$, 2.27-2.35 (m, 3H), $1.78(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.37(\mathrm{~m}, 6 \mathrm{H}), 1,14(\mathrm{~s}, 9 \mathrm{H})$, $0.83-0.94(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): $\delta 138.58,122.43$, 121.02, 117.91, 98.68, 60.24, 55.12, 32.00, 31.70, 30.63, 30.42, 29.27, 26.75, 22.60, 14.05; IR (neat): 3330, 2960, 2926, 2857, 2202, 1658, 1556, 1458, 1366, 1221, 1154, 1030, 940, $815 \mathrm{~cm}^{-1}$; MS (EI): m/z 47 (85), 57 (100), 120 (75), 191 (41), 232 (14), 247 (27), 303 (3); HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{Na}[M+\mathrm{Na}]^{+}$: 326.2567; found: 326.2567.
4.10. Methyl 1-tert-butyl-5-(tert-butylamino)-2-cyano-1H-pyrrole-3carboxylate (7a)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.10(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.29$ (s , 1 H), 1.83 ($\mathrm{s}, 9 \mathrm{H}$), 1.32 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 163.28, 141.90, 125.82, 115.71, 115.16, 100.16, 60.78, 52.50, 51.65, 31.27, 29.70; IR (KBr): 3443, 2976, 2208, 1720, 1564, 1506, 1200, $1118 \mathrm{~cm}^{-1}$; MS (EI): m/z 41 (71), 57 (100), 133 (53), 165 (86), 174 (22), 189 (14), 206 (24), 221 (39), 277 (9); HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{2}[M+\mathrm{Na}]^{+}: 300.1682$; found: 300.1683.
4.11. 1-tert-Butyl-5-(tert-butylamino)-3-methoxymethyl-1H-pyrrole-2-carbonitrile (8a) [12]
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~s}$, $3 H), 3.26(\mathrm{~s}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.
4.12. Methyl 1-tert-butyl-5-(tert-butylamino)-2-cyano-3-phenyl-1H-pyrrole-4-carboxylate (9a)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.43(\mathrm{~m}, 5 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H})$, $3.59(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.54,146.68,138.16,132.23,129.41,127.75,116.24,110.59$, 100.03, 62.67, 56.87, 50.91, 31.81, 29.47. IR (KBr): 3320, 2974, 2208, 1726, 1689, 1516, 1451, 1368, 1279, 1189, 1127, 1035, 822, 709, $662 \mathrm{~cm}^{-1}$; MS (EI): m/z 41 (82), 57 (66), 128 (18), 154 (8), 180 (15), 209 (100), 241 (34), 297 (25). Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 71.39; H, 7.65; N 11.90. Found: C, 71.29; H, 7.84; N, 11.69\%.
4.13. Methyl 1-tert-butyl-5-(tert-butylamino)-2-cyano-4-phenyl-1H-pyrrole-3-carboxylate (9b)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}$, $1 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 9 \mathrm{H})$, 0.75 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.29,139.60$, 134.40, 128.02, 127.19, 123.81, 123.79, 115.37, 102.64, 62.60, 55.61, 51.47, 32.14, 30.00; IR (KBr): 3370, 2971, 2210, 1709, 1604, 1510, 1479, 1431, 1362, 1320, 1263, 1181, 1112, 1027,

974, 786, 723, $552 \mathrm{~cm}^{-1}$; MS (EI): m/z 41 (89), 57 (85), 127 (10), 155 (16), 180 (14), 209 (24), 241 (100), 281 (10), 297 (32). Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 71.39; H, 7.65; N, 11.90. Found: C, 71.32; H, 7.77; N, 11.74\%.
4.14. Methyl 1-tert-butyl-5-(tert-butylamino)-2-cyano-3-methyl-1H-pyrrole-4-carboxylate (10a)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.18$ ($\mathrm{s}, 1 \mathrm{H}$), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), 2.35 (s , 3H), 1.79 (s, 9H), 1.09 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 165.71, 147.71, 135.18, 116.21, 110.70, 100.25, 62.02, 58.87, 50.83, 31.69, 29.46, 12.49; IR (KBr): 3302, 2975, 2204, 1692, 1548, 1516, 1440, 1368, 1270, 1193, 1110, 1041, 951, 797, $678 \mathrm{~cm}^{-1}$; MS (EI): m/z 41 (47), 57 (59), 147 (100), 179 (49), 235 (25), 281 (6). Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 65.98; H, 8.59; N, 14.43. Found: C, 65.89 ; H, 8.59 ; N, 14.27%.
4.15. 1-tert-Butyl-5-(tert-butylamino)-3,4-diethyl-1H-pyrrole-2carbonitrile (11)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.58(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.14(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $138.77,138.25,120.42,117.68,97.52,59.93,54.86,32.09,30.60$, 19.02, 18.05, 15.41, 15.24; IR (KBr): 3329, 2972, 2933, 2874, 2187, 1547, 1444, 1368, 1310, 1264, 1218, 1062, 980, 938, $809 \mathrm{~cm}^{-1}$; MS (EI): m/z 41 (87), 57 (79), 148 (56), 163 (100), 219 (27), 275 (4); HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 298.2254; found: 298.2252.
4.16. 1-tert-Butyl-5-(tert-butylamino)-3,4-dipropyl-1H-pyrrole-2carbonitrile (12)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 9 \mathrm{H}), 1.55(\mathrm{tt}, J=6.1,7.4 \mathrm{~Hz}$, 2H), 1.43 (tt, $J=6.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $9 \mathrm{H}), 0.87(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.93$, 137.20, 119.23, 117.70, 98.20, 59.95, 55.08, 32.07, 30.60, 27.70, 23.69, 14.08, 13.88; IR (KBr): 3332, 2963, 2871, 2192, 1659, 1548, 1503, 1445, 1366, 1319, 1228, 957, 778, $695 \mathrm{~cm}^{-1}$; MS (EI): m/z 41 (100), 57 (92), 162 (94), 176 (26), 191 (48), 247 (34), 303 (4); HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}_{3}[M+\mathrm{Na}]^{+}$: 326.2567 ; found: 326.2566.
4.17. Synthesis of pyrroles $\mathbf{3}$ using slow addition of tertbutylisocyanide

To a solution of $\mathbf{1 b}(10.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ in DCE $(1.0 \mathrm{~mL})$ was added phenylacetylene ($55 \mathrm{ml}, 0.50 \mathrm{mmol}$) under a nitrogen atmosphere in a Schlenk tube with a rubber septum. The flask was placed in an $80^{\circ} \mathrm{C}$ oil bath. A solution of tert-butylisocyanide $(170 \mathrm{ml}, 1.5 \mathrm{mmol})$ in DCE $(2.0 \mathrm{~mL})$ was added to the reaction mixture in the flask over 5 h using a syringe pump. After the addition was completed, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for another 12 h . The mixture was cooled to room temperature and filtered through a short plug of silica gel using ether as an eluent. The yield and the isomer ratio were determined by GC using ndodecane as an internal standard.

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research [No. 17750081] from MEXT, and partially carried out using instruments at the Center for Instrumental Analysis of Shizuoka University.

Appendix A. Supplementary material

CCDC 705109 contains the supplementary crystallographic data for $\mathbf{1 a} \cdot \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2008.12.039.

References

[1] (a) R.M. Bullock, C.P. Casey, Acc. Chem. Res. 20 (1987) 167;
(b) H. Steimhagen, G. Helmchen, Angew. Chem., Int. Ed. 35 (1996) 2339;
(c) E.K. van den Beuken, B.L. Feringa, Tetrahedron Lett. 54 (1998) 12985;
(d) G.J. Rowlands, Tetrahedron 57 (2001) 1865;
(e) M. Shibasaki, Y. Yamamoto (Eds.), Multimetallic Catalysis in Organic Synthesis, Wiley-VCH, Weinheim, 2004.
[2] (a) A.L. Balch, Homogeneous Catalysis with Metal Phosphine Complexes, Plenum Press, New York, 1983;
(b) R.J. Puddephatt, Chem. Soc. Rev. 12 (1983) 99;
(c) B. Chaudret, B. Delavaux, R. Poilblanc, Coord. Chem. Rev. 86 (1988) 191;
(d) R.J. Puddephatt, L. Manojlovic-Muir, K.W. Muir, Polyhedron 9 (1990) 2767;
(e) G.K. Anderson, Adv. Organomet. Chem. 35 (1993) 1.
[3] (a) For recent examples, see D. Evrard, M. Drouin, Y. Mugnier, P.D. Harvey, Inorg. Chim. Acta 350 (2003) 442;
(b) R.U. Kirss, D.A. Forsyth, M.A. Plante, J. Organomet. Chem. 688 (2003) 206; (c) C.B. Pamplin, S.J. Rettig, B.O. Patrick, B.R. James, Inorg. Chem. 42 (2003) 4117;
(d) G. Besenyei, L. Párkányi, G. Szalontai, S. Holly, I. Pápai, G. Keresztury, A. Nagy, Dalton Trans. (2004) 2041;
(e) G. Szalontai, G. Besenyei, Inorg. Chim. Acta 357 (2004) 4413;
(f) J.H.K. Yip, J. Wu, K.-Y. Wong, K.P. Ho, L.L. Koh, J.J. Vittel, Eur. J. Inorg. Chem. (2004) 1056;
(g) T. Braun, A. Steffen, V. Schorlemer, B. Neumann, H.-G. Stammler, Dalton Trans. (2005) 3331;
(h) D. Evrard, S. Clément, D. Lucas, B. Hanquet, M. Knorr, C. Strohmann, A. Decken, Y. Mugnier, P.D. Harvey, Inorg. Chem. 45 (2006) 1305;
(i) D. Evrard, K. Groison, A. Decken, Y. Mugnier, P.D. Harvey, Inorg. Chim. Acta 359 (2006) 2608.
[4] N. Tsukada, O. Tamura, Y. Inoue, Organometallics 21 (2002) 2521.
[5] (a) N. Tsukada, T. Mitsuboshi, H. Setoguchi, Y. Inoue, J. Am. Chem. Soc. 125 (2003) 12102;
(b) N. Tsukada, K. Murata, Y. Inoue, Tetrahedron Lett. 46 (2005) 7515;
(c) N. Tsukada, H. Setoguchi, T. Mitsuboshi, Y. Inoue, Chem. Lett. 35 (2006) 1164.
[6] (a) N.D. Jones, B.R. James, Adv. Synth. Catal. 344 (2002) 1126;
(b) S.J.L. Foo, N.D. Jones, B.O. Patrick, B.R. James, Chem. Commun. (2003) 988;
(c) N.D. Jones, S.J.L. Foo, B.O. Patrick, B.R. James, Inorg. Chem. 43 (2004) 4056; (d) J.N.L. Dennett, M. Bierenstiel, M.J. Ferguson, R. McDonald, M. Cowie, Inorg. Chem. 45 (2006) 3705.
[7] (a) P. Nair, G.K. Anderson, N.P. Rath, Inorg. Chem. Commun. 5 (2002) 653; (b) P. Nair, G.K. Anderson, N.P. Rath, Organometallics 22 (2003) 1494;
(c) P. Nair, G.K. Anderson, N.P. Rath, Inorg. Chem. Commun. 6 (2003) 1307.
[8] (a) N.M. Rutherford, M.M. Olmstead, A.L. Balch, Inorg. Chem. 23 (1984) 2833;
(b) Y. Yamamoto, H. Yamazaki, Bull. Chem. Soc. Jpn. 58 (1985) 1843;
(c) T. Tanase, K. Kawahara, H. Ukaji, K. Kobayashi, H. Yamazaki, Y. Yamamoto, Inorg. Chem. 32 (1993) 3682;
(d) T. Tanase, H. Ukaji, Y. Yamamoto, J. Chem. Soc., Dalton Trans. (1996) 3059;
(e) Y. Yamamoto, F. Arima, J. Chem. Soc., Dalton Trans. (1996) 1815;
(f) T. Tanase, J. Matsuo, T. Onaka, R.A. Begum, M. Hamaguchi, S. Yano, Y. Yamamoto, J. Organomet. Chem. 592 (1999) 103;
(g) J. Vicente, J.-A. Abad, A.D. Frankland, J. López-Serrano, P.G. Jones, Organometallics 21 (2002) 272.
[9] (a) Y. Yamamoto, H. Yamazaki, Organometallics 12 (1993) 933;;
(b) M. Rashidi, J.J. Vittal, R.J. Puddephatt, J. Chem. Soc., Dalton Trans. (1994) 1283;
(c) J.-F. Bérubé, K. Gagnon, D. Fortin, A. Decken, P.D. Harvey, Inorg. Chem. 45 (2006) 2812.
[10] (a) D. Perreault, M. Drouin, A. Michel, P.D. Harvey, Inorg. Chem. 31 (1992) 2740;
(b) P.D. Harvey, Z. Murtaza, Inorg. Chem. 32 (1993) 4721;
(c) R. Provencher, P.D. Harvey, Inorg. Chem. 35 (1996) 2113.
[11] (a) Y. Yamamoto, H. Yamazaki, Inorg. Chem. 25 (1986) 3327;
(b) T. Tanase, T. Fukushima, T. Nomura, Y. Yamamoto, Inorg. Chem. 33 (1994) 32.
[12] M. Jautelat, K. Ley, Synthesis (1970) 593.
[13] (a) For related reactions using TMSCN, see: N. Chatani, T. Hanafusa, Tetrahedron Lett. 27 (1986) 4201;
(b) T. Kusumoto, T. Hiyama, K. Ogata, Tetrahedron Lett. 27 (1986) 4197.
[14] (a) J. Tsuji, T. Nogi, J. Am. Chem. Soc. 88 (1966) 1289;;
(b) E.M. Campi, G.D. Fallon, W.R. Jackson, Y. Nilsson, Aust. J. Chem. 45 (1992) 1167;
(c) T. Joh, K. Doyama, K. Onitsuka, T. Shiohara, S. Takahashi, Organometallics 10 (1991) 2493;
(d) T. Joh, H. Nagata, S. Takahashi, Inorg. Chim. Acta 220 (1994) 45;
(e) K. Fuji, T. Morimoto, K. Tsutsumi, K. Kakiuchi, Chem. Commun. (2005) 3295.
[15] (a) H.W. Sternberg, J.G. Shukys, C.D. Donne, R. Markby, R.A. Friedel, I. Wender, J. Am. Chem. Soc. 81 (1959) 2339;
(b) O.S. Mills, G. Robinson, Inorg. Chim. Acta 1 (1967) 61.
[16] (a) R.J. Puddephatt, M.A. Thomson, Inorg. Chem. 21 (1982) 725; (b) M.J. Irwin, G. Jia, J.J. Vittal, R.J. Puddephatt, Organometallics 15 (1996) 5321.
[17] W.D. Jones, W.P. Kosar, Organometallics 5 (1986) 1823.
[18] R.A. Stockland, G.K. Anderson, N.P. Rath, J. Am. Chem. Soc. 121 (1999) 7945.

[^0]: * Corresponding authors. Present address: Department of Chemistry, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan. Tel./fax: +8154 2384759 (N. Tsukada).

 E-mail address: sntsuka@ipc.shizuoka.ac.jp (N. Tsukada).

[^1]: ${ }^{\text {a }}$ A mixture of pheylacetylene (0.5 mmol), tert-butylisocyanide (0.5 mmol), catalyst ($0.01 \mathrm{mmol}, 2 \mathrm{~mol} \%$) in solvent (2 ml) were stirred for $16-18 \mathrm{~h}$.
 ${ }^{\mathrm{b}}$ GC yields based on tert-butylisocyanide.
 ${ }^{c}$ Determined by GC.
 ${ }^{\text {d }} 1.5 \mathrm{mmol}$ of tert-butylisocyanide was used.
 e $4 \mathrm{~mol} \%$ of palladium acetate was used.

